

Hybrid Particle-Continuum Computations of Nonequilibrium Hypersonic Flows

Iain D. Boyd and Wen-Lan Wang
Department of Aerospace Engineering
University of Michigan, Ann Arbor, MI 48109
Ann Arbor, MI 48109

Supported by AFOSR and NASA

Overview

- Background and motivation.
- Numerical schemes:
 - CFD/DSMC-IP hybrid approach;
 - domain coupling;
 - location of interface.
- Hypersonic flow examples:
 - normal shock waves;
 - blunted cone tip.
- Summary and conclusions.

Background

- Hypersonic vehicles encounter a variety of flow regimes:
 - continuum: modeled accurately and efficiently with CFD;
 - rarefied: modeled accurately and efficiently with DSMC.
- A hybrid DSMC-CFD method is attractive for mixed flows:
 - CFD: Navier-Stokes finite-volume algorithm;
 - DSMC: MONACO+Information Preservation (DSMC/IP).

Motivation for Hybrid Method

Example Where CFD Works Best

Example Where DSMC Works Best

Hybrid Approach

interface

MacCormack and Candler Comp. Fluids, **17**, 1989

Sun and Boyd J. Comp. Phys., **179**, 2002

Navier-Stokes solver

2nd order accurate modified Steger-Warming flux-vector splitting approach (FVM)

Macroscopic properties are preserved as well as microscopic particle information

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial r_i} (\rho u_i) = 0$$

$$\frac{\partial \rho u_j}{\partial t} + \frac{\partial}{\partial r_i} (\rho u_{ij} + P_{ij}) = \frac{\partial}{\partial r_i} \tau_{ij}$$

$$\frac{\partial e}{\partial t} + \frac{\partial}{\partial r_i} [(e + P)u_i] = \frac{\partial}{\partial r_i} (u_j \tau_{ij} - q_i)$$

$$\frac{\partial \rho_c}{\partial t} + \frac{\partial}{\partial r_i} (\rho_c V_{i,c}) = 0$$

$$V_{i,c} = \frac{1}{N_p} \sum_{j=1}^{N_p} V_{i,j}$$

$$T_c = \frac{1}{N_p} \sum_{j=1}^{N_p} (T_j + T_{a,j})$$

Direct Simulation Monte Carlo (DSMC)

- Particle method for nonequilibrium gas flows:
 - developed by Bird (1960's);
 - particles move/collide in physical space;
 - particles possess microscopic properties,
 e.g. u' (thermal velocity);
 - cell size $\Delta x \sim \lambda$, time step $\Delta t \sim 1/\nu$;
 - collisions handled statistically (not MD);
 - ideal for supersonic/hypersonic flows;
 - thermochemical nonequilibrium models.

Information Preservation Method

- A novel particle approach for gas flows:
 - evolves alongside DSMC;
 - particles and cells possess preserved information, e.g. n, <<u>u</u>>, T;
 - $-\Delta n$ from number conservation;
 - $-\Delta < \underline{\mathbf{u}} >$ from momentum conservation;
 - $-\Delta T$ from energy conservation;
 - greatly reduces statistical fluctuations;
 - provides DSMC-CFD interface.

Domain Coupling

Interface Location: Continuum Breakdown Parameters

• Local Knudsen number, hypersonic flow (Boyd et al., 1995)

$$Kn_{GLL-Q} = \frac{\lambda}{Q} \left| \frac{dQ}{dx} \right| > 0.05$$

- where $Q = \rho$, T, V.
- Determined through detailed DSMC versus CFD comparisons:

$$Kn_{max} = max(Kn_D, Kn_V, Kn_T)$$

- Parameters also under investigation for use inside DSMC:
 - failure of breakdown parameters at shock front;
 - use DSMC to evaluate continuum onset parameter?

Cut-off Value = 0.05

Hybrid CFD/DSMC-IP Process

Summary of Hybrid Code

- Numerical methods:
 - 2d/axially symmetric, steady state;
 - CFD: explicit, finite volume solution of NS Eqs.;
 - DSMC: particle simulation;
 - interface: Information Preservation scheme;
 - implementation: a single, parallel code.
- Physical modeling:
 - simple, perfect gas (rotation, but no vibration);
 - walls: slip / incomplete accommodation;
 - breakdown parameter: local Knudsen number.

Numerical Example (1) Normal Shock Waves of Argon

- Argon normal shocks investigated:
 - relatively simple hypersonic flow;
 - Alsmeyer experimental measurements;
 - well-known case for testing new algorithms.
- Simulations:
 - modeled in 2D (400 x 5 cells);
 - initialized by jump conditions;
 - pure DSMC;
 - pure CFD (Navier-Stokes equations);
 - hybrid code initialized by CFD solution.

Mach 5 Profiles

Reciprocal Shock Thickness

Numerical Performance

Method	CPU Time (sec) Per Iteration		
Pure CFD	0.032		
Pure DSMC	0.48		
Hybrid	0.29		

- Hybrid simulation employed 57% particle cells
- DSMC time-step could be 20 times larger

Numerical Example (2) Blunted Cone

Ma_{∞}	$\lambda_{\infty}(m)$	$\rho_{\infty}(kg/m^3)$	$U_{\infty}(m/s)$	$T_{\infty}(K)$	$T_{vib}(K)$	$T_{w}(K)$
12.6	1.28×10 ⁻⁴	5.618×10 ⁻⁴	2630.4	104.4	2680.2	297.2

Particle Domain $(Kn_{max} > 0.03)$

Comparisons of Density Contours

Comparisons of Temperature Contours

Comparisons of Surface Properties

Detailed Comparisons Along the Stagnation Streamline

Detailed Comparisons at x = 2 cm

Detailed Comparisons at x = 4 cm

Summary

- Hybrid continuum-particle algorithm developed:
 - based on NS and DSMC methods coupled using IP;
 - 2d/axially symmetric;
 - perfect gas physical model;
 - high-speed flow conditions tested;
 - fully parallelized using MPI.
- Assessment of hybrid methodology:
 - able to compute shock waves and complex hypersonic flows;
 - able to move CFD solution to DSMC solution;
 - need to improve continuum interface prediction;
 - need to greatly improve numerical performance.

Future Directions

- Algorithm development for hybrid method:
 - CFD: parallel, implicit solver on unstructured mesh;
 - DSMC: implicit and/or other acceleration schemes.
- Physics development for hybrid method:
 - vibrational relaxation;
 - chemically reacting gas mixture.
- Development of hybrid methodology:
 - refinement of breakdown parameters;
 - evaluation against data (measured, computed).